일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
- dtw
- portaudio
- perl
- 단백질
- 파이썬3
- RMSD
- 파이썬
- overflowed
- python2
- transmembrane
- python3
- PyMOL
- ab initio
- 3차원구조
- bioinformatics
- librosa
- imgaemagick
- 분비단백질
- 리간드
- venn
- 소리분석
- 생물정보학
- protein
- purification
- pyaudio
- in planta
- python
- R
- 프로그램
- 파이몰
- Today
- Total
목록프로그램 (4)
박사면뭐해
기본 사용법: # phobius.pl -short [infile.fasta] > [output.txt] Phobius ver 1.01 (c) 2004 Lukas Kall, Anders Krogh, Erik Sonnhammer usage: phobius.pl [options] [infile] infile A fasta file with the query protein sequences. If not present input will be read from stdin. options: -h, -help Show this help message and exit -short Short output. One line per protein. -long Long output. This is the default. -..
기본 사용법: # tmhmm [seq.fasta] > [seq.tmhmm] TMHMM2.0 User's guide This program is for prediction of transmembrane helices in proteins. July 2001: TMHMM has been rated best in an independent comparison of programs for prediction of TM helices: S. Moller, M.D.R. Croning, R. Apweiler. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics, 17(7):646-653, July 2001. (med..
기본 명령어: # signalp -fasta [input.fasta] 결과는 [input]_summary.signalp5로 자동 생성됨 Usage of signalp: -batch int Number of sequences that the tool will run simultaneously. Decrease or increase size depending on your system memory. (default 10000) -fasta string Input file in fasta format. -format string Output format. 'long' for generating the predictions with plots, 'short' for the predictions without p..
기본 명령어: # python2 EffectorP.py -i [input.fasta] -o [output.result.out] -E [effector.fasta] -N [non-effector.fasta] ※ NOTE: python2 기반이라서 환경변수 설정을 해주더라도 프로그램 경로를 다 입력해서 실행해야 함. # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # EffectorP :: predicting fungal effector proteins from secretomes using machine learning # EffectorP 2.0 (November 2017); http://effectorp.csiro...